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We consider a non-standard boundary value problem characterizing deformations of a com-
posite consisting of a arbitrarily-shaped elastic inclusion embedded in an infinite elastic
matrix subjected to uniform remote stresses. The interface between the inclusion and the
surrounding matrix is taken to be imperfect with ’spring-like’ interface parameters describing
the properties of the interface layer. We show that any classical solution to the boundary
value problem is necessarily unique despite the fact that the asymptotic behaviour of the
solution is not accommodated by the corresponding classical results from the same theory
of elasticity.
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1. Introduction

Problems in composite mechanics involving elastic inclusions (inhomogeneities) embedded in an
infinite matrix of a separate elastic material have attracted considerable attention from both
theoreticians and practitioners alike. Earlier studies in this area focused on the assumption that
the inclusion was perfectly bonded to the surrounding matrix (tractions and displacements were
assumed to be continuous across the inclusion-matrix interface: see, for example, Eshelby, 1957,
1959). Recently, in an attempt to understand interface damage and its subsequent effect on the
effective properties of composites, there has been increased emphasis on a class of problems in
which the inclusion is imperfectly bonded to the matrix. Analyses in this context have been
performed for linear isotropic materials (see, for example, Hashin, 1991a; Gao, 1995; Ru and
Schiavone, 1997; Sudak et al., 1999, and the references contained therein), linear anisotropic
materials (for example, Ting and Schiavone, 2010) and for a class of materials undergoing finite
plane deformations (for example, Wang, 2012). In many of these cases, the (imperfect) interface
model used is the well-known ’spring-layer model’ (Hashin, 1991b) in which tractions are conti-
nuous but displacements are discontinuous across the interface with ’jumps’ in the displacement
components assumed to be proportional to their corresponding interface traction components.
This model is particularly attractive in that it can be used to account for micro-voids and micro-
-cracks almost always present in the interfacial region (Fan and Sze, 2001). Unfortunately, the
model is almost always associated with a non-standard ’transmission-type’ boundary value pro-
blem and although certain solutions for specific inclusion geometries and loading conditions have
recently been established (see, for example, Ru and Schiavone, 1997; Sudak et al., 1999; Ting
and Schiavone, 2010) no rigorous analysis of the well-posedness of the corresponding boundary
value problems has been undertaken. The question of the uniqueness of solution is particularly
important since it forms the basis of most constructive methods (numerical or otherwise) cur-
rently being used to solve this important class of problems. Unfortunately, uniqueness theorems
for this type of problem are not accommodated by those available for classical boundary value
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problems, essentially because of the peculiar nature of the boundary condition across the inter-
face. In this paper, we establish uniqueness results for the problem describing the plane-strain
deformations of an inclusion-matrix composite subjected to plane-strain deformations.

2. Formulation

Consider a domain in R
2, infinite in extent, containing a single internal elastic inhomogeneity

with elastic properties different than those of the surrounding matrix. The matrix and inhomoge-
neity occupy regions denoted by S(1) and S(2), respectively, while the inclusion-matrix interface
is denoted by the smooth curve Γ . In what follows, the superscripts (1), (2) refer, respectively,
to quantities corresponding to the regions S(1) and S(2).
The classical boundary-value problem describing the deformation of the composite in the

absence of body forces is given by Hashin (1991b) and Constanda (1995):

Find a regular solution pair {u(1), u(2)} such that u(2) ∈ C2(S(2)) ∩ C1(S
(2)
) and

u(1) ∈ C2(S(1)) ∩C1(S
(1)
) ∩A and such that

L(2)u(2) = 0 in S(2)

L(1)u(1) = 0 in S(1)

T (1)u(1) = T (2)u(2) on Γ

M(u(1) − u(2)) = T (2)u(2) +Mu(0) on Γ

(2.1)

Here, u is the (2× 1)-matrix describing the displacement field; L, T are the (2× 2)-matrices of
operators representing the governing equations and stress operators, respectively, of the plane-

-strain (see Constanda, 1995);M is the matrix

[

m 0
0 n

]

of (variable) interface parametersm,n> 0

prescribed on Γ (Hashin, 1991b; Sudak et al., 1999); u(0) represents an additional displacement
induced within the inhomogeneity by a uniform eigenstrain, and A represents the collection of
displacement fields with asymptotic behaviour described by

u(1)(x, y) = (c1x− c2y + o(1), c3x− c4y + o(1))

for (x, y) ∈ R
2 as x2 + y2 →∞

(2.2)

with known constants ci, i = 1, 2, 3, 4. We note that Eq. (2.2) corresponds to the case of pre-
scribed uniform remote stress and, as such, is not accommodated by the classical results of
Constanda (1995).

3. Uniqueness Result

Consider the difference pair {w(1), w(2)} of any two solutions to boundary value problem (2.1)-
-(2.2). Let KR be a circle with smooth boundary ∂KR and radius R sufficiently large so that Γ
lies inside KR. Writing the Betti formulae (Constanda, 1995) for {w

(1), w(2)} in the bounded
regions S(1)∩KR and S

(2), making use of the homogeneous boundary conditions for {w(1), w(2)}
and asymptotic condition from (2.2) on w(1), we arrive at the equation

∫

S(2)

E(w(2), w(2)) dA+

∫

S(1)

E(w(1), w(1)) dA+

∫

Γ

{M−1Tw(2)}TTw(2) dS = 0

where E is the internal energy density. Given that m,n > 0 on Γ , we deduce that w(1), w(2)

are arbitrary rigid displacements in each of S(1) and S(2), respectively. From the asymptotic
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conditions on w(1), we easily deduce that w(1) = 0 in S
(1)
; hence w(1) = T (1)w(1) = 0 on Γ .

Boundary conditions (2.1)2,3 then imply that −Mw
(2) = 0 on Γ , which, since M is invertible,

means that w(2) = 0 on Γ . Since it has already been determined that w(2) is an arbitrary rigid
displacement in S(2), the continuity requirements of boundary value problem (2.1)-(2.2) mean

that w(2) = 0 in S
(2)
. Consequently, boundary value problem (2.1)-(2.2) has at most one regular

solution pair {u(1), u(2)} which establishes the required uniqueness result.
It should be noted that particular solutions to (2.1)-(2.2) have been constructed by Sudak

et al. (1999). The formal analysis of the existence of solutions to (2.1)-(2.2) using the boundary
integral equation method will be the subject of a future paper. The same technique as that used
above, with very little change in detail, can be applied to prove the uniqueness result for the
corresponding problem of anti-plane shear deformations studied by Ru and Schiavone (1997)
and Ting and Schiavone (2010).
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